All Issue

2019 Vol.7, Issue 3 Preview Page
September 2019. pp. 27-37
Abstract
기업에서는 다양한 프로세스들을 운용하는 방법으로는 프로세스라는 기술이 있다. 일반적으로 엔터프라이즈급 협업에서는 프로세스가 효율적으로 운용되어야 하고, 로컬 시스템 간의 상호운용은 필수이다. 그러나 지능형 클라우드 환경에서 로컬 시스템들은 그 목적에 따라 운영되고 있어서 엔터프라이즈급 협업 특성에 맞게 프로세스들을 실제로 운용하기가 어렵다. 또한, 기업형 환경에서 로컬 시스템 간의 프로세스를 운영하기 위해서는 서비스 기반의 전사적 데이터 통합이 필요하다.본 논문에서는 지능형 클라우드 환경에서 엔터프라이즈급 프로세스가 협업에서 효율적으로 운용되는 방법으로써 확장된 EMRA(Extended Metadata Registry Access) 기반의 시스템을 제안한다. 확장된 EMRA는 데이터 통합에 필요한 로컬 시스템 간의 상호운용이 가능하도록 한다. 또한, 프로세스 내부에 포함된 쿼리 간의 발생하는 메타데이터 정보 간의 매핑을 EMRA를 이용한다. 그리고 머신러닝을 이용하여 EMRA에서의 글로벌 스키마와 로컬 스키마 간의 매핑에 대한 분류 및 구성에 대한 기법을 제시한다.
The company has a process called technology as a way to operate a variety of processes. Typically the process is to be operated efficiently in an enterprise-class collaboration and interoperability between the local system is required. However, the local system in intelligent cloud environments are difficult to actually operate the processes to enterprise-class collaboration and operational characteristics in accordance with its purpose. In addition, the enterprise data integration services based is necessary to operate the process between the local system in the enterprise environment. In this paper, we propose a system based on (Extended Metadata Registry Access) EMRA extended by how efficiently management in enterprise-class collaboration processes in intelligent cloud environments. The extended EMRA enables interoperability between local systems for data integration. Also, EMRA is used to map the metadata information that occurs between the queries contained in the process. And, we propose a classification and composition method for mapping between global schema and local schema in EMRA using machine learning.
References
  1. Chen, Hsinchun, Roger HL Chiang, and Veda C. Storey. “Business intelligence and analytics: from big data to big impact.” MIS quarterly (2012): 1165-1188.10.2307/41703503
  2. Demchenko, Yuri, et al. “Addressing big data issues in scientific data infrastructure.” Collaboration Technologies and Systems (CTS), 2013 International Conference on. IEEE, 2013.10.1109/CTS.2013.6567203
  3. Janssen, Marijn, Elsa Estevez, and Tomasz Janowski. “Interoperability in big, open, and linked data--organizational maturity, capabilities, and data portfolios.” Computer 47.10 (2014): 44-49.10.1109/MC.2014.290
  4. Kolář, Jiří, and Tomáš Pitner. “Collaborative process design in cloud environment.” Web Information Systems Engineering- WISE 2011 and 2012 Workshops. Springer, Berlin, Heidelberg, 2013.10.1007/978-3-642-38333-5_8
  5. Kadadi, Anirudh, et al. “Challenges of data integration and interoperability in big data.” Big Data (Big Data), 2014 IEEE International Conference on. IEEE, 2014.10.1109/BigData.2014.7004486
  6. Bernardino, Jorge R., Pedro S. Furtado, and Henrique C. Madeira. “Approximate query answering using data warehouse striping.” Journal of Intelligent Information Systems 19.2 (2002): 145-167.
  7. Kadadi, Anirudh, et al. “Challenges of data integration and interoperability in big data.” Big Data (Big Data), 2014 IEEE International Conference on. IEEE, 2014.10.1109/BigData.2014.7004486
  8. Cuzzocrea, Alfredo, Il-Yeol Song, and Karen C. Davis. “Analytics over large-scale multidimensional data: the big data revolution!.” Proceedings of the ACM 14th international workshop on Data Warehousing and OLAP. ACM, 2011.10.1145/2064676.2064695
  9. Moon, SeokJae, GyeDong Jung, and YoungKeun Choi. “A Study on Cooperation System design for Business Process based on XMDR in Grid.” International Journal of Grid and Distributed Computing 3.3 (2010): 1-12.
  10. Keck, Kevin D., and John L. McCarthy. “XMDR: Proposed Prototype Architecture Version 1.01.” (2005).
  11. Lee, Jong-Sub, and Seok-Jae Moon. “Collaboration System using Agent based on MRA in Cloud.” International Journal of Applied Engineering Research 12.20 (2017): 9955-9959.
  12. Lawrence, Ramon. “Integration and virtualization of relational SQL and NoSQL systems including MySQL and MongoDB.” Computational Science and Computational Intelligence (CSCI), 2014 International Conference on. Vol. 1. IEEE, 2014.10.1109/CSCI.2014.5625203688
  13. Rodrigues, Romulo Alceu, et al. “Integrating NoSQL, Relational Database, and the Hadoop Ecosystem in an Interdisciplinary Project involving Big Data and Credit Card Transactions.” Information Technology-New Generations. Springer, Cham, 2018. 443-451.10.1007/978-3-319-54978-1_57
  14. Reddy, A. Diwakar, and J. Geetha Reddy. “Algorithms for Iterative Applications in MapReduce Framework.” International Proceedings on Advances in Soft Computing, Intelligent Systems and Applications. Springer, Singapore, 2018. 51-61.10.1007/978-981-10-5272-9_5
  15. Bateja, Ritika, Sanjay Kumar Dubey, and Ashutosh Bhatt. “Health Recommender System and Its Applicability with MapReduce Framework.” Soft Computing: Theories and Applications. Springer, Singapore, 2018. 255-266.10.1007/978-981-10-5272-9_5
  16. Jung, Kye-Dong, Seok-Jae Moon, and Jin-Mook Kim. “Data access control method for multimedia content data sharing and security based on XMDR-DAI in mobile cloud storage.” Multimedia Tools and Applications 76.19 (2017): 19983-19999.10.1007/978-981-10-5699-4_25
Information
  • Publisher :The Society of Convergence Knowledge
  • Publisher(Ko) :융복합지식학회
  • Journal Title :The Society of Convergence Knowledge Transactions
  • Journal Title(Ko) :융복합지식학회논문지
  • Volume : 7
  • No :3
  • Pages :27-37