All Issue

2024 Vol.12, Issue 1 Preview Page

Research Article

31 March 2024. pp. 43-53
Abstract
최근 스마트 농업은 사물인터넷(IoT), 인공지능(AI), 빅데이터, 로봇 등 통신 기술(ICT)을 접목하여 종자·생산·수확·유통·소비 등 농업 가치사슬(Value Chain)의 모든 단계에 걸쳐 생산성 및 제품 품질의 농업 경쟁력을 향상시키고 있다. 그러나, 기상 이변, 기온 및 강수량 패턴의 변화 등 비정상적인 기후 조건은 농업에 심각한 영향을 미쳐 다양한 농업 문제를 일으키고 있다. 본 논문에서는 이상 기후 변화에 능동적으로 반응할 수 있도록 자율센서 정보를 최적화하기 위한 AI 기반의 효율적인 스마트 농업 관리 기법을 제안한다. 제안 기법은 자율센서 정보를 균형화하기 위해서 기계 학습과 인공지능 모델이 사용할 데이터 셋을 비대칭 처리 방식으로 처리한다. 제안 기법은 비정상적인 기후 조건(물 부족, 극한 온도, 계절 변화, 습도 등)에 대응하기 위해서 DNN 모델을 사용하여 대용량의 실시간 자율센서 정보를 지속해서 학습하는 것을 보장한다. 또한, 제안 기법은 DNN 서비스를 효율적으로 처리할 수 있도록 실시간 대용량의 자율센서 정보를 블록체인으로 묶어 처리함으로써 분산된 기록 보관 시스템 역할을 수행한다. 제안 기법은 자율센서 정보의 가중치를 일정 간격으로 확률값을 누적함으로써 자율센서 정보 간 동기화를 유지 및 검증을 할 수 있다.
Recently smart agriculture is improving the agricultural competitiveness of productivity and product quality throughout all stages of the agricultural value chain (Value Chain) such as seeds, production, harvesting, distribution, and consumption by incorporating communication technologies (ICTs) such as the Internet of Things (IoT), artificial intelligence (AI), big data, and robots. However, abnormal climatic conditions such as extreme weather events, changes in temperature and precipitation patterns have a serious impact on agriculture, causing various agricultural problems. In this paper, we propose an AI-based efficient smart agricultural management technique to optimize autonomous sensor information so that it can actively respond to abnormal climate changes. The proposed technique employs an asymmetric processing method to prepare the data set for machine learning and AI models, ensuring balanced autonomous sensor information. The proposed technique ensures continuous learning of large-capacity real-time autonomous sensor information using the DNN model to cope with abnormal climatic conditions (water shortage, extreme temperature, seasonal change, humidity, etc.). In addition, the proposed technique plays the role of a distributed record storage system by grouping and processing real-time large-capacity autonomous sensor information into a blockchain so that the DNN service can be handled efficiently. The proposed technique may maintain and verify synchronization between autonomous sensor information by accumulating probability values at regular intervals for weights of autonomous sensor information.
References
  1. M. A. DayioĞLu, and U. Turker, "Digital Transformation for Sustainable Future - Agriculture 4.0 : A review. Journal of Agricultural Sciences(Tarım Bilimleri Dergisi)", Vol. 27, No. 4, pp. 373-399, 2021. 10.15832/ankutbd.986431
  2. V. Sharma, A. K. Tripathi, and H. Mittal, "Technological revolutions in smart farming: Current trends", Computers and Electronics in Agriculture, Vol. 201, 2022 10.1016/j.compag.2022.107217
  3. Z. Zhai, J. F. Martínez, V. Beltran, and N. L. Martínez, "Decision support systems for agriculture 4.0: Survey and challenges," Computers and Electronics in Agriculture, Vol. 170, 2020. 10.1016/j.compag.2020.105256
  4. C. H. Rhew, S. S. Kim and W. J. Cho, "Towards Sustainable Agriculture in Korea: Theoretical Backgrounds and Practical Challenges", Korean Journal of Agricultural Science, Vol. 28, No. 1, pp. 1-30, 2020
  5. The future of food and agriculture - Trends and challenges. Nations, F. a. A. O. o. t. U., Ed., 2017.
  6. M. Crippa, E. Solazzo, D. Guizzardi, F. Monforti-Ferrario, F. N. Tubiello, and A. Leip, "Food systems are responsible for a third of global anthropogenic GHG emissions", Nature Food, Vol. 2, No. 3, pp. 198-209. 2021. 10.1038/s43016-021-00225-9 37117443
  7. M. Dhanaraju, P. Chenniappan, K. Ramalingam, S. Pazhanivelan and R. Kaliaperumal, "Smart Farming: Internet of Things (IoT)-Based Sustainable Agriculture", Agriculture, Vol. 12, No. 10. p.1715, 2022.10.3390/agriculture12101745
  8. V. Saiz-Rubio, and F. Rovira-Más, "From Smart Farming towards Agriculture 5.0: A Review on Crop Data Management", Agronomy, Vol. 10, No. 2. p.207, 2020.10.3390/agronomy10020207
  9. M. Kang, and F. Y. Wang, "From parallel plants to smart plants: intelligent control and management for plant growth", IEEE/CAA Journal of Automatica Sinica, Vol. 4, No. 2, pp. 161-166, 2017. 10.1109/JAS.2017.7510487
  10. I. Sa, Z. Chen, M. Popović, R. Khanna, F. Liebisch, J. Nieto, and R. Siegwart, "WeedNet: Dense Semantic Weed Classification Using Multispectral Images and MAV for Smart Farming", IEEE Robotics and Automation Letters, Vol. 3, No. 1, pp. 588-595, 2018.10.1109/LRA.2017.2774979
  11. S. Lee, H. Ahn, J. Seo, Y. Chung, D. Park, and S. Pan, "Practical Monitoring of Undergrown Pigs for IoT-Based Large-Scale Smart Farm", IEEE Access, Vol. 7, pp. 173796-173810, 2019.10.1109/ACCESS.2019.2955761
  12. 스마트 팜 세대별 모델(1~3 세대) 및 기자재 국가 표준 확대, Mar. 2021, https://black-velvet.tistory.com/entry/%EC%8A%A4%EB%A7%88%ED%8A%B8%ED%8C%9C-%EC%84%B8%EB%8C%80%EB%B3%84-%EB%AA%A8%EB%8D%B813%EC%84%B8%EB%8C%80-%EB%B0%8F-%EA%B8%B0%EC%9E%90%EC%9E%AC-%EA%B5%AD%EA%B0%80-%ED%91%9C%EC%A4%80-%ED%99%95%EB%8C%80
  13. 농림축산식품부, 스마트 팜 개요, https://www.mafra.go.kr/home/5280/subview.do
  14. J. You, X. Li, M. Low, D. Lobell, and S. Ermon, "Deep Gaussian Process for Crop Yield Prediction Based on Remote Sensing Data", Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence, Vol. 31, No. 1, pp. 4559-4565, 2017.10.1609/aaai.v31i1.11172
  15. A. Akbar, A. Kuanar, J. Patnaik, A. Mishra, and S. Nayak, "Application of Artificial Neural Network modeling for optimization and prediction of essential oil yield in turmeric (Curcuma longa L.)", Comput. Electron. Agrictronics in Agriculture, Vol. 148, pp. 160-178, 2018 10.1016/j.compag.2018.03.002
  16. S. Fountas, G. Carli, C. G. Sørensen, Z. Tsiropoulos, C. Cavalaris, A. Vatsanidou, B. Liakos, M. Canavari, J. Wiebensohn, and B. Tisserye, "Farm management information systems: Current situation and future perspectives", Computer Electronics in Agriculture, Vol. 115, pp. 40-50, 2015. 10.1016/j.compag.2015.05.011
  17. S. E. Muhammed, B. P. Marchant, R. Webster, A. P. Whitmore, G. Dailey, and A. E. Milne, "Assessing sampling designs for determining fertilizer practice from yield data", Computer Electronics in Agriculture, Vol. 135, pp. 163-174, 2017. 10.1016/j.compag.2017.02.002
Information
  • Publisher :The Society of Convergence Knowledge
  • Publisher(Ko) :융복합지식학회
  • Journal Title :The Society of Convergence Knowledge Transactions
  • Journal Title(Ko) :융복합지식학회논문지
  • Volume : 12
  • No :1
  • Pages :43-53