All Issue

2021 Vol.9, Issue 1

Research Article

31 March 2021. pp. 1-8
Abstract
인쇄전자 기반으로 제작된 종이 기반 스트레인 센서는 다양한 응용 분야가 있으며, 특히 저항 기반 센서는 환경 친화적이며 웨어러블 장치에 사용할 수 있어 천천히 변화하는 변형, 무거운 하중을 받는 구조 또는 극한 이벤트로 인한 예기치 않은 영향을 감지하는데 적합하다. 본 연구에서는 Ag/CNT 스크린 프린팅 공정을 사용하여 GF 20 이상의 종이 기반 스트레인 센서를 제작하였고 인쇄적성에 따른 센서 제작 및 센싱 효과를 체계적으로 분석하였다. 그 결과, gap이 0.38에서 0.5 mm로 증가할 경우 선폭이 546 um에서 최대 396 um로 감소함 확인하였고 스퀴지가 스크린 메쉬에 5 mm에서 9 mm로 가까워질수록 패턴 폭은 581에서 721 um로 증가됨을 볼 수 있었다. 또한, 100°C에서 저항값이 352 Ω에서 220°C일 때 100 Ω까지 감소하였는데 이러한 온도 변화는 Ag/CNT의 결합구조에 영향을 미치고 이는 감도 차이를 생성함을 확인할 수 있었다. 이를 통해 스크린 프린팅 공정으로 종이기반 스트레인 센서 기술 개발을 위한 의미 있는 기본 데이터로 사용될 수 있다고 사료된다.
Paper-based strain sensors produced based on printed electronics have a variety of applications for slowly changing deformation, heavy-loaded structures, or extreme events. Especially resistance-based sensors which can be used in wearable devices, are affected by printability. In this study, a strain sensor based on GF 20 or higher was fabricated using the Ag/CNT screen printing process, and the sensor fabrication and sensing effects were systematically analyzed according to its printability. As a result, when the gap between mesh and sbustrate is increased from 0.38 to 0.5 mm, line width decreases from 546 um to a maximum of 396 um. As the confirmed squeegee approaches the screen mesh from 5 mm to 9 mm, the pattern width increases from 581 to 721 um. In addition, it can be seen that the resistance value decreases from 352 Ω to 100 Ω when drying temperature increased from 100°C to 220°C, which is attributed to the bonding structure of Ag/CNTs and creates a sensitivity difference. Through this, it is considered a number of meaningful basic data for the development of paper-based strain sensor technology as a screen printing process.
References
  1. J. W. Han, B. Kim, J. Li, and M. Meyyappan, "Carbon nanotube based humidity sensor on cellulose paper", Journal of Physical Chemistry C, Vol. 116, pp. 22094-22097, 2012.https://doi.org/10.1021/jp3080223
  2. X. Qi, X. Li, H. Jo, K. S. Bhat, S. Kim, J. An, J. W. Kang, and S. Lim, "Mulberry paper-based graphene strain sensor for wearable electronics with high mechanical strength", Sensors and Actuators A: Physical, Vol. 301, 111697, January 2020.https://doi.org/10.1016/j.sna.2019.111697
  3. T. Songjaroen, W. Dungchai, O. Chailapakul, C. S. Henry, and W. Laiwattanapaisal, "Blood separation on microfluidic paper-based analytical devices", Lab on a Chip, Vol. 12, pp. 3392-3398, July 2012.https://doi.org/10.1039/c2lc21299dPMid:22782449
  4. A. Khan, Z. Abas, H. S. Kim, and J. Kim, "Recent progress on cellulose-based electro-active paper, its hybrid nanocomposites and applications", Sensors (Switzerland), Vol. 16, pp. 1-30, July 2016.https://doi.org/10.3390/s16081172PMid:27472335PMCid:PMC5017338
  5. S. K. Mahadeva, and J. Kim, "Conductometric glucose biosensor made with cellulose and tin oxide hybrid nanocomposite", Sensors and Actuators B: Chemical, Vol. 157, No. 1, pp. 177-182, September 2011.https://doi.org/10.1016/j.snb.2011.03.046
  6. S. Rengaraj, Á. Cruz-Izquierdo, J. L. Scott, and M. Di Lorenzo, "Impedimetric paper-based biosensor for the detection of bacterial contamination in water", Sensors and Actuators B: Chemical, Vol. 265, pp. 50-58, July 2018.https://doi.org/10.1016/j.snb.2018.03.020
  7. E. Noviana, C. P. McCord, K. M. Clark, I. Jang, and C. S. Henry, "Electrochemical paper-based devices: Sensing approaches and progress toward practical applications", Lab on a Chip, Vol. 20, pp. 9-34, 2020.https://doi.org/10.1039/C9LC00903EPMid:31620764
  8. H. Gullapalli, V. S. M. Vemuru, A. Kumar, A. Botello-Mendez, R. Vajtai, M. Terrones, S. Nagarajaiah, and P. M. Ajayan, "Flexible piezoelectric ZnO-paper nanocomposite strain sensor", Small, Vol. 6, No. 15, pp. 1641-1646, August 2010.https://doi.org/10.1002/smll.201000254PMid:20623526
  9. X. Liu, M. Mwangi, X. Li, M. O'Brien, and G. M. Whitesides, "Paper-based piezoresistive MEMS sensors", Lab on a Chip, Vol. 11, pp. 2189-2196, 2011.https://doi.org/10.1039/c1lc20161aPMid:21566813
  10. E. Khajeh, W. Lou, and B. Stoeber, "Paper-based strain sensing material", Proceedings of the IEEE 26th International Conference on Micro Electro Mechanical Systems (MEMS), pp. 473-476, January 2013.https://doi.org/10.1109/MEMSYS.2013.6474281
  11. T. Meiss, R. Wertschutzky, and B. Stoeber, "Rapid prototyping of resistive MEMS sensing devices on paper substrates", Proceedings of the IEEE 27th International Conference on Micro Electro Mechanical Systems (MEMS), pp. 536-539, January 2014.https://doi.org/10.1109/MEMSYS.2014.6765696
Information
  • Publisher :The Society of Convergence Knowledge
  • Publisher(Ko) :융복합지식학회
  • Journal Title :The Society of Convergence Knowledge Transactions
  • Journal Title(Ko) :융복합지식학회논문지
  • Volume : 9
  • No :1
  • Pages :1-8