All Issue

2021 Vol.9, Issue 4 Preview Page

Research Article

31 December 2021. pp. 43-54
Abstract
적외선 영상은 일반적인 가시광 영상에 비해 사용 가능한 데이터셋이 상대적으로 적을 뿐만 아니라 영상획득 비용도 높다. 따라서, 머신러닝이나 시뮬레이션 분야에서는 적외선 영상을 생성하여 활용하려는 연구가 활발하다. 본 논문에서는 정밀한 표면온도 계산을 바탕으로 실제와 유사한 적외선 영상을 생성하는 방안과 그 구현 결과를 제시하였다. 실제 물리적 수식을 기반으로 한 3차원 복합 열해석을 바탕으로 복잡한 형상의 차량에 대한 열해석을 수행하였고, 제시한 방안의 오차가 약 1% 정도로 매우 정밀함을 확인하였다. 이러한 정확한 표면온도와 BRDF 값을 이용한 표면의 방향별 반사율을 이용하여 적외선 영상을 생성하면, 실제 적외선 카메라로 촬영된 영상과 유사한 적외선 영상의 생성이 가능함을 구현 결과로 확인할 수 있었다.
Compared to general visible light images, infrared images have relatively few available data sets and also have high image acquisition costs. Therefore, in the field of machine learning or simulation, research to generate and utilize infrared images is active. In this paper, a method for generating infrared images based on precise surface temperature calculation and its implementation result are presented. Thermal analysis was performed on a vehicle with a complex shape based on a three-dimensional conjugate heat transfer analysis based on actual physical formulas, and it was confirmed that the error of the proposed method was about 1%. As a result of the implementation, it was confirmed that an infrared image similar to an image captured by an actual infrared camera can be generated when an infrared image is generated using the accurate surface temperature and BRDF (Bi-Directional Reflectance Distribution Function).
References
  1. K. Han, D. Kim, J. Choi, N. Ha, H. Jang, and T. Kim, "Development of a Generalized Software for IR Image Generation and Analysis", KIISE Transactions on Computing Practices, Vol. 23, No. 3, pp. 141-147, 2017.https://doi.org/10.5626/KTCP.2017.23.3.141
  2. H. Jang, N. Ha, S. Lee, T. Choi, and M. Kim, "Three-Dimensional Conjugate Heat Transfer Analysis for Infrared Target Modeling", Journal of Korean Institute of Information Scientists and Engineers, Vol. 44, No. 4, pp. 411-416, 2017.https://doi.org/10.5626/JOK.2017.44.4.411
  3. D. Kim, K. Kwon, H. Jang, Y. Yeon, and N. Ha, "Development and Experimental Validation of a Thermal/Infrared Signal Prediction Software for the 3D-Object Exposed to Outdoors", Journal of Computational Fluids Engineering, Vol. 26, No. 3, pp. 117-124, 2021.https://doi.org/10.6112/kscfe.2021.26.3.117
  4. https://www.oktal-se.fr
  5. A. L. Goff, P. Kersaudy, J. Latger, T. Cathala, N. Stolte, and P. Barillot, "Automatic Temperature Computation for Realistic IR Simulation", International Society for Optics and Photonics, Targets and Backgrounds VI, Vol. 4029, pp. 187-196, 2000.https://doi.org/10.1117/12.392526
  6. J. Lin, J. Ma, K. Wu, and J. Wu, "Research of Ship Scene Simulation Based on SE-Workbench-EO", International Society for Optics and Photonics, AOPC 2017: Optical Sensing and Imaging Technology and Applications. Vol. 10462, p. 104629V, 2017.https://doi.org/10.1117/12.2282902
  7. https://www.thermoanalytics.com/taitherm
  8. https://www.thermoanalytics.com/muses
  9. K. Johnson, A. Curran, D. Less, D. Levanen, and E. Marttila, "MuSES: A New Heat and Signature Management Design Tool for Virtual Prototyping", Proceedings of the 9th Annual Ground Target Modelling and Validation Conference, August, 1998.
  10. C. Nelsson, P. Hermansson, T. Winzell, and S. Sjökvist, "Benchmarking and Validation of IR Signature Programs: SensorVision, CAMEO-SIM and RadThermIR", Swedish Defence Research Agency Sensor Technology, 2005.
  11. A. Malaplate, P. Grossmann, and F. Schwenger, "CUBI: A Test Body for Thermal Object Model Validation", Proceedings of the Society of Photo-Optical Instrumentation Engineers, Vol. 6543, p. 654305, 2007.https://doi.org/10.1117/12.724825
  12. M. Van Iersel, A. M. J. van Eijk, H. E. T. Veerman, K. W. Benoist, and L. H. Cohen, "Infrared Signature Evolution of a CUBI", Proceedings of the Society of Photo-Optical Instrumentation Engineers, Vol. 9614, pp. 96140H, 2015.https://doi.org/10.1117/12.2191262
  13. J. Choi, and T. Kim, "Characteristic Analysis of IR Signatures for Different Optical Surface Properties by Computer Modeling and Field Measurement", Image and Signal Processing for Remote Sensing XVI, Vol. 7830, pp. 78301L, 2010.https://doi.org/10.1117/12.865338
  14. J. Choi, D. Kim, J. Kim, and T. Kim, "Infrared Signature Analysis on a Flat Plate by Using the Spectral BRDF Data", Journal of the Korean Society for Aeronautical & Space Sciences, Vol. 38, No. 6, pp. 577-585, 2010.https://doi.org/10.5139/JKSAS.2010.38.6.577
  15. A. Berk, P. Conforti, R. Kennett, T. Perkins, F. Hawes, and J. van den Bosch, "MODTRAN® 6: A Major Upgrade of the MODTRAN® Radiative Transfer Code", Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing, pp. 1-4, 2014.https://doi.org/10.1117/12.2050433
  16. D. Kim, K. Han, J. Choi, J. Lee, and T. Kim, "Study on View Factor Calculation for Radiative Heat Transfer by Using the Mesh Subdivision Method", Journal of Computational Fluids Engineering, Vol. 19, No. 1, pp. 1-6, 2014.https://doi.org/10.6112/kscfe.2014.19.1.001
  17. D. Kim, K. Kwon, H. Jang, N. Ha, and C. Song, "A Study on the View Factor Calculation for Radiative Heat Transfer by Using the Voxel-Based Ray Tracing Technique", Journal of computational fluids engineering, Vol. 24, No. 4, pp. 54-59, 2019.https://doi.org/10.6112/kscfe.2019.24.4.054
  18. S. Gubler, S. Gruber, and R. S. Purves, "Uncertainties of Parameterized Surface Downward Clear-Sky Shortwave and All-Sky Longwave Radiation", Atmospheric Chemistry and Physics, Vol. 12, No. 11, pp. 5077-5098, 2012.https://doi.org/10.5194/acp-12-5077-2012
  19. F. E. Nicodemus, "Reflectance Nomenclature and Directional Reflectance and Emissivity", Applied Optics, Vol. 9, No 6, pp. 1474-1475, 1970.https://doi.org/10.1364/AO.9.001474PMid:20076403
  20. B. P. Sandford, and D. C. Robertson, "Infrared Reflectance Properties of Aircraft Paints", Proceedings of the IRIS Targets, Backgrounds, and Discrimination, pp. 111-127, 1985.
  21. D. Kim, K. Han, J. Choi, S. Choi, and T. Kim, "A Study on a High Speed Computational Scheme for the Reflected IR Signal Component by Considering the BRDF", Journal of the Korea Institute of Military Science and Technology, Vol. 20, No. 1, pp. 18-24, 2017.https://doi.org/10.9766/KIMST.2017.20.1.018
  22. J. Crank, and P. Nicolson, "A Practical Method for Numerical Evaluation of Solutions of Partial Differential Equations of the Heat-Conduction Type", Proceedings of the Cambridge Philosophical Society, Vol. 43, No. 1, pp. 50-67, 1996.https://doi.org/10.1017/S0305004100023197
  23. K. Kwon, D. Kim, H. Jang, J. Huh, K. Lee, and N. Ha, "Implementation of 3D Thermal Analysis Algorithm using CUDA", Proceedings of the Conference of the Korea Institute of Military Science and Technology, pp. 453-454, 2020.
  24. Y. Yeon, D. Kim, H. Jeon, N. Ha, K. Lee, and J. Huh, "An Infrared Measurement System Design for DB Construction", Proceedings of the Conference of the Korea Institute of Military Science and Technology, pp. 203-204, 2019.
Information
  • Publisher :The Society of Convergence Knowledge
  • Publisher(Ko) :융복합지식학회
  • Journal Title :The Society of Convergence Knowledge Transactions
  • Journal Title(Ko) :융복합지식학회논문지
  • Volume : 9
  • No :4
  • Pages :43-54