All Issue

2022 Vol.10, Issue 2 Preview Page

Research Article

30 June 2022. pp. 11-21
Abstract
바나듐 레독스 흐름전지 격막으로 사용하기 위하여, 양이온 교환멤브레인을 원자이동 라디칼 그래프트 중합법으로 합성하였다. 구체적으로 양이온 교환 멤브레인의 주쇄사슬로써 범용플라스틱인 poly(vinyl chloride)를 사용하였다. 여기에 술폰산기(-SO3Na)를 갖은 4-styrene sulfonate를 원자이동 라디칼 그래프트 중합시킴으로서 poly(vinyl chloride)-g-poly(styrene sulfonate), 약칭 PVC-g-PSS, 합성한 후, 핸디 캐스팅하여 양이온 교환 멤브레인을 제작하였다. 제조된 양이온 교환 멤브레인에 대하여 물 흡착률과 팽창률, 이온 전도도, 이온 교환 용량, 바나듐 투과도, 인장강도를 측정 평가되었다. 또한, 제조된 양이온 교환 멤브레인의 직접 바나듐 레독스 흐름 전지에 적용하여 1,000회 충전 및 방전시킴으로써 이온-교환 막으로써의 안정성이 평가하였다. 이 결과 제조된 PVC-g-PSS 양이온 교환 멤브레인의 경우 바나듐 레독스 흐름전지에 사용할 수 있다.
In order to use vanadium redox flow battery separator, we synthesized a cation exchange membrane by atom transfer radical graft polymerization. Poly(vinyl chloride) which is known as a general plastic materials, was used as the main chain polymer of the cation exchange membrane. The poly(vinyl chloride) is grafted by atom transfer radical graft polymerization of 4-styrene sulfonate with sulfonate group (-SO3Na) to give poly(vinyl chloride)-g-poly(styrene sulfonate), PVC-g-PSS. The cation exchange membrane was fabricated by hand casting of the solution after dissolving N-methyl-2-pyrrolidone of PVC-g-PSS. The obtained cation exchange membranes were characterized by water adsorption ratio, expansion ratio, ion conductivity, ion exchange capacity, vanadium permeability, and tensile strength for using separator of vanadium redox flow battery. The vanadium redox flow battery system with PVC-g-PSS separator during charging and discharging with 1,000 cycles had very higher stability. From these results, the synthesized cation exchange membrane could be used as separator in vanadium redox flow battery system.
References
  1. R. K. Nagarale, G. S. Gohil, and V. K. Shahi, "Recent Developments on Ion-Exchange Membranes and Electro-Membrane Processes", Advances in Colloid and Interface Science, Vol. 119, No. 2-3, pp. 97-130, 2006.https://doi.org/10.1016/j.cis.2005.09.005PMid:16325751
  2. A. Hamnett, "Mechanism and Electrocatalysis in the Direct Methanol Fuel Cell", Catalysis Today, Vol. 38, No. 4, pp. 445-457, 1997.https://doi.org/10.1016/S0920-5861(97)00054-0
  3. M. Rikukawa, and K. Sanui, "Proton-Conducting Polymer Electrolyte Membranes Based on Hydrocarbon Polymers", Progress in Polymer Science, Vol. 25, No. 10, pp. 1463-1502, 2000.https://doi.org/10.1016/S0079-6700(00)00032-0
  4. M. Rychcik, and M. Skyllas-Kazacos, "Characteristics of a New All-Vanadium Redox Flow Battery", Journal of Power Sources, Vol. 22, No. 1, pp. 59-67, 1988.https://doi.org/10.1016/0378-7753(88)80005-3
  5. B. Jiang, L. Wu, L. Yu, X. Qiu, and J. Xi, "A Comparative Study of Nafion Series Membranes for Vanadium Redox Flow Batteries", Journal of Membrane Science, Vol. 510, pp. 18-26, 2016.https://doi.org/10.1016/j.memsci.2016.03.007
  6. S. Savari, S. Sachdeva, and A. Kumar, "Electrolysis of Sodium Chloride Using Composite Poly(styrene-co-divinylbenzene) Cation Exchange Membranes", Journal of Membrane Science, Vol. 310, No. 1-2, pp. 246-261, 2008.https://doi.org/10.1016/j.memsci.2007.10.049
  7. D. Song, J. Xu, Y. Fu, L. Xu, and B. Shan, "Polysulfone/Sulfonated Polysulfone Alloy Membranes with an Improved Performance in Processing Mariculture Wastewater", Chemical Engineering Journal, Vol. 304, pp. 882-889, 2016.https://doi.org/10.1016/j.cej.2016.07.009
  8. C. Zhao, H. Lin, K. Shao, X. Li, H. Ni, Z. Wang, and H. Na, "Block Sulfonated Poly(ether ether ketone)s (SPEEK) Ionomers with High Ion-Exchange Capacities for Proton Exchange Membranes", Journal of Power Sources, Vol. 162, No. 2, pp. 1003-1009, 2006.https://doi.org/10.1016/j.jpowsour.2006.07.055
  9. S. Singha, T. Jana, J. A. Modestra, A. N. Kumar, and S. V. Mohan, "Highly Efficient Sulfonated Polybenzimidazole as a Proton Exchange Membrane for Microbial Fuel Cells", Journal of Power Sources, Vol. 317, pp. 143-152, 2016.https://doi.org/10.1016/j.jpowsour.2016.03.103
  10. Y. Zhang, S. Zhang, X. Huang, X. Zhou, Y. Pu, and H. Zhang, "Synthesis and Properties of Branched Sulfonated Polyimides for Membranes in Vanadium Redox Flow Battery Application", Electrochimica Acta, Vol. 210, pp. 308-320, 2016.https://doi.org/10.1016/j.electacta.2016.05.116
  11. T. Luo, Y. Zhang, H. Xu, Z. Zhang, F. Fu, S. Gao, and C. Zhu, "Highly Conductive Proton Exchange Membranes from Sulfonated Polyphosphazene-Graft-Copolystyrenes Doped with Sulfonated Single-Walled Carbon Nanotubes", Journal of Membrane Science, Vol. 514, pp. 527-536, 2016.https://doi.org/10.1016/j.memsci.2016.04.071
  12. C. Boyer, N. A. Corrigan, K. Jung, D. Nguyen, T. K. Nguyen, N. N. M. Adnan, and J. Yeow, "Copper-Mediated Living Radical Polymerization (Atom Transfer Radical Polymerization and Copper(0) Mediated Polymerization): From Fundamentals to Bioapplications", Chemical Reviews, Vol. 116, No. 4, pp. 1803-1949, 2016.https://doi.org/10.1021/acs.chemrev.5b00396PMid:26535452
  13. P. Chmielarz, P. Krys, S. Park, and K. Matyjaszewski, "PEO-b-PNIPAM Copolymers via SARA ATRP and eATRP in Aqueous Media", Polymer, Vol. 71, pp. 143-147, 2015.https://doi.org/10.1016/j.polymer.2015.06.042
  14. T. Mackuľak, A. Takáčová, M. Gál, M. Marton, and J. Ryba, "PVC Degradation by Fenton Reaction and Biological Decomposition", Polymer Degradation and Stability, Vol. 120, pp. 226-231, 2015.https://doi.org/10.1016/j.polymdegradstab.2015.07.005
  15. S. Y. Tawfik, J. N. Asaad, and M. W. Sabaa, "Thermal and Mechanical Behaviour of Flexible Poly(vinyl chloride) Mixed with Some Saturated Polyesters", Polymer Degradation and Stability, Vol. 91, No. 2, pp. 385-392, 2006.https://doi.org/10.1016/j.polymdegradstab.2005.04.041
  16. C. Y. Hsiao, H. A. Han, G. H. Lee, and C. H. Peng, "AGET and SARA ATRP of Styrene and Methyl Methacrylate Mediated by Pyridyl-Imine Based Copper Complexes", European Polymer Journal, Vol. 51, pp. 12-20, 2014.https://doi.org/10.1016/j.eurpolymj.2013.11.013
  17. T. Watari, H. Wang, K. Kuwahara, K. Tanaka, H. Kita, and K. I. Okamoto, "Water Vapor Sorption and Diffusion Properties of Sulfonated Polyimide Membranes", Journal of Membrane Science, Vol. 219, No. 1-2, pp. 137-147, 2003.https://doi.org/10.1016/S0376-7388(03)00195-9
  18. F. Wang, M. Hickner, Y. S. Kim, T. A. Zawodzinski, and J. E. McGrath, "Direct Polymerization of Sulfonated Poly(arylene ether sulfone) Random (statistical) Copolymers: Candidates for New Proton Exchange Membranes", Journal of Membrane Science, Vol. 197, No. 1-2, pp. 231-242, 2002.https://doi.org/10.1016/S0376-7388(01)00620-2
  19. A. H. Galama, N. A. Hoog, and D. R. Yntema, "Method for Determining Ion Exchange Membrane Resistance for Electrodialysis Systems", Desalination, Vol. 380, pp. 1-11, 2016.https://doi.org/10.1016/j.desal.2015.11.018
  20. G. J. Hwang, and H. Ohya, "Preparation of Cation Exchange Membrane as a Separator for the All-Vanadium Redox Flow Battery", Journal of Membrane Science, Vol. 120, No. 1, pp. 55-67, 1996.https://doi.org/10.1016/0376-7388(96)00135-4
  21. S. Winardi, S. C. Raghu, M. O. Oo, Q. Yan, N. Wai, T. M. Lim, and M. Skyllas-Kazacos, "Sulfonated poly (ether ether ketone)-Based Proton Exchange Membranes for Vanadium Redox Battery Applications", Journal of Membrane Science, Vol. 450, pp. 313-322, 2014.https://doi.org/10.1016/j.memsci.2013.09.024
Information
  • Publisher :The Society of Convergence Knowledge
  • Publisher(Ko) :융복합지식학회
  • Journal Title :The Society of Convergence Knowledge Transactions
  • Journal Title(Ko) :융복합지식학회논문지
  • Volume : 10
  • No :2
  • Pages :11-21